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the final results of this calculation agree with the ex-
perimental points to within about two per cent over the
frequency range in which the calculations were per-
formed. Further refinement is not warranted by the ex-
perimental data, and in any case a calculation from
Hill’s equation using a greater number of terms in the
Fourier series for F(z) becomes too difficult.

IV. ConNcLusioNs

From the agreement between the theoretical curve
and the experimental points on Fig. 4 one can conclude
that the analysis of these modulated surface-wave struc-
tures by means of a Mathieu equation is fairly accurate,
in spite of the rather wide slots in these structures, the
crudeness of the approximation to F(z), and the fact
that d and X were of the same order of magnitude. One
notes, as is to be expected, that the agreement is better
in those cases where the modulation is less severe, but
even where F(z) varies over a four-to-one range, the re-
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sult is not greatly in error.

Concerning the properties of modulated corrugated
rods in general, one notes that v, is more nearly inde-
pendent of frequency than for a uniform rod, The
tendency of v, to decrease with decreasing wavelength
is compensated by the fact that C, moves closer to the
minimum of //(z) as the form of F(z) becomes more
peaked. On the other hand, the effect of increasing the
modulation, and hence Cy, for a given Cy, in the range of
parameters used here is to decrease m, or increase v,
but this is not universally true nor is it the dominant
effect here. There is also very little difference between
structures 4 and B with respect to dispersion.

Finally, with more extensive observation over the
possible range of n and v, one should be able to demon-
strate the existence of the stop bands predicted in
Fig. 6, but no such effect was observed in the experi-
ments performed here.

Small Resonant Scatterers and Their Use for
Field Measurements*

ROGER F. HARRINGTONT, MEMBER, TRE

Summary—A general formulation for the back-scattered field
from loaded objects is given. It is shown that small resonant objects
produce a much greater back-scattered field than small nonresonant
ones. The theory is applied to short dipoles and small loops. The use
of small resonant scatterers to measure electric and magnetic fields
by scattering techniques is discussed. Resonant scatterers are found
to have several advantages over nonresonant scatterers when used
for field measurements.

I. INTRODUCTION
THE FIELD scattered by short straight wires has

been used to measure microwave electric fields.3
To separate the scattered field from the incident
field more easily, the scattered field has been modulated
by mechanical methods,? and by diodes.? Microwave

* Received by the PGMTT, November 17, 1961; revised manu-
script received, January 2, 1962. This study was supported by Rome
Air Development Center, Rome, N. Y., under Contract No. AF
30(602)-1640.

1 Department of Electrical Engineering, Syracuse [lniversity,
Syracuse, N. Y.

1 R, Justice and V. H. Rumsey, “Measurement of electric field
distributions,” IRE TRANS. ON ANTENNAS AND PROPAGATION, vol.
AP-3, pp. 177-180; October, 1955.

2 A Cullen and J. Parr, “A new perturbation method for measur-
ing microwave fields in free space,” Proc. IEE, vol. 102 B, pp.
836-841; November, 1955. .

3 J. H. Richmond, “A modulated scattering technique for meas-
urement of field distributions,” IRE TraNS. ON MICROWAVE
THEORY AND TECHNIQUES, vol. MTT-3, pp. 13-15; July, 1955.

magnetic fields have been measured by the field
scattered from a small loop of wire, using two diodes
such that they modulate the field due to the magnetic
moment of the loop, but do not modulate the field due to
the electric moment.* Scattering techniques for measur-
ing electric and magnetic fields are attractive because
no receiving equipment or transmission lines need be
connected to the scatterer. This is in contrast to methods
which detect the signal received by probes and loops;
hence, scattering methods usually disturb the field to be
measured less than do receiving methods.

This paper presents an analysis of small tuned scat-
terers, and proposes their use in scattering methods for
measuring electric and magnetic fields. The use of
resonant scatterers instead of nonresonant scatterers
gives the following advantages: 1) The scattered field
from resonant scatterers is much larger than that from
nonresonant scatterers, Of the order of 30-db improve-
ment can be obtained. 2) The magnetic moment of a
loop scatterer can be greatly enhanced without materi-
ally changing the electric moment. This allows one to

4 M. K. Hu, “On measurement of E and H field distributions
by using modulated scattering methods,” IRE Trans. on Micro-
waveE TrEORY AND TECHNIQUES, vol. MTT-8, pp. 295-300; May,
1960.
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use a tuned loop scatterer for most magnetic field
measurements without the use of a complicated modula-
tion scheme. 3) If modulation is desired, it can be ac-
complished in several ways not available for non-
resonant scatterers. One can modulate the tuning re-
actance, or vary the scatterer size, or frequency
modulate the field, as discussed in Section VIII. On
the other hand, disadvantages of using resonant scat-
terers are: 1) tuning of the scatterer is required, and 2)
construction of the tuned scatterer is more complicated
than the untuned one.

I1. GEnErAL THEORY

Fig. 1 represents the general problem of back scatter-
ing from a loaded scatterer. There are two objects, de-
noted by 1 and 2, each having a pair of closely-spaced
terminals, also denoted by 1 and 2. Object 1, exited by a
current source across terminals 1, produces an incident
field. Object 2, loaded by an impedance Z;, across termi-
nals 2, represents a loaded scatterer. The back-scat-
tered voltage is defined as the difference between volt-
age appearing across terminals 1 when the scatterer
(object 2 and Z1) is present and when it is absent. The
case of plane-wave back scattering is obtained when
objects 1 and 2 are infinitely far apart. The general
formulation of the problem is similar to that used by
Professor Y. Y. Hu for loaded dipole scatterers.®

Fig. 1—The general case of back scattering by a loaded scatterer.

Terminal pairs 1 and 2 of Fig. 1 define a two-port
network. For linear matter,
Vi=Zuli+ Ziols
V‘l = ZZIII + Z22[27 (1)
where Vi, I and Vs, I, are the voltages and currents at
terminals 1 and 2, respectively. When all matter is

isotropic, Ziz=Zs. When the load impedance Z exists
across terminals 2,

Vy= — I.Z;. (2)
Using (1) and (2), one finds the voltage at terminals 1 as

v @ hZ)z 3)
1 — 11 Z22 + ZL 1.

5Y. Y. Hu, “Back-scattering cross section of a center-loaded
cylindrical antenna,” IRE TRANS. ON ANTENNAS AND PROPAGATION,
vol. AP-6, pp. 140-148; January, 1958.
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Now define 173, as the voltage across terminals 1 when
object 2 is absent and I; is impressed at terminals 1.
Let the input impedance to this one-port network be de-
noted by

Vi

I,
Define the back-scattered voltage as the difference be-
tween the voltage at terminals 1 when object 2 is present
and when it is absent, that is,

AV = Vi — Vi (3)
Then, using (3) and (4) in (5), one obtains
AV = |:<Z11 gy - ]11. ©)
Ze+ Z1

Hence, the general problem of back scattering from a
scatterer loaded by an arbitrary impedance Z 1 involves
the determination of three parameters: (Z11—Z1), Zi
and Zzz.

Variational formulas for impedance parameters are
well known.® Consider objects 1 and 2 to be perfectly
conducting, and let

J.=Current due to source I, impressed at terminals
1, the other terminals open circuited. (7N
E,=TElectric field due to J..
In general, E;is related to the J, by a tensor (or dyadic)
Green’s function I' by

E@ = [ [ vt ), (®)

where r and r’ denote radius vectors. A stationary
formula for any of the impedance elements is then

-1
Z”.:__ i ,d .
JJ,ffE Jods ©

The formula for Z; is the same as for Z1; except that ob-
ject 2 is now absent. Defining

Jw=~Current on object 1 due to I; when object 2 is

absent, (10)
E,,= Electric field due to Ji,
one has the stationary formula
—1
Zl bt > f E10‘J1od§'. (11)
.[1“

These formulas are applied to particular problems by
assuming trial currents and calculating the desired im-
pedances. Adjustable constants (variational param-
eters) can be included in the trial currents and evalu-
ated by the Ritz procedure. A discussion of the evalua-
tion of the Z’s by the Ritz procedure is given in the
Appendix.

6R. F. Harrington', “Time-Harmonic Electromagnetic Fields,”
McGraw-Hill Book Company, Inc., sect. 7-9; 1961.



1962

Returning now to (6), one may note that the second
term on the right-hand side is maximum when

Zr = —jIm (Zs), (12)

for passive Z,. Eq. (12) will be used to define a
resonant scatterer. When (Zy —Z) and Re (Zg) are small,
the scattered voltage is maximum at resonance. It follows
a resonance curve when Z; is tuned through resonance.
Conducting scatterers small with respect to wave-
length usually exhibit such resonance phenomena.

ITI. PLANE-WAVE BACK SCATTERING

The general formulas can be specialized to plane-
wave back scattering as follows. Let object 1 vanish so
that terminals 1 are in empty space. The field of I,
impressed across terminals 1 is then simply the field of
a current element I,/ in free space. To be specific, let
Il be z directed and located on the v axis a distance »
from the origin, as shown in Fig. 2. As »— one ob-
tains in the vicinity of the origin a plane-wave field

(13)

k=wavenumber

Eyp = quoe_Jky,

where wu,=unit sz-directed wvector,
(=2w/\), and

Eo = 7’_Il_l e,

2\r (15

where 5 =intrinsic impedance (=+/u/€) and \=wave-
length.

It fe

Fig. 2—Plane-wave back scattering is obtained by letting
I/ recede to infinity.

When the scatterer is present, the incident field in-
duces a current on the scatterer, which in turn produces
a scattered field E,. The component of E, in the direc-
tion of I{ at Il is called the back-scatiered field. The
area for which the incident field contains sufficient power
to produce, by omnidirectional radiation, the same
field as is back scattered by the scatterer, is called the
echo area o of the scatterer. In equation form
u;- E,

2

(15)

o = lim 4arr?

r—w

7

0

where u; is a unit vector in the direction of Ii/. In terms
of the scattered voltage

u,-E, = AV/L, (16)
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and so the echo area is given by
. N2/ 7\ AV |2
o = lim 47 ~> —> —1, (17)
row n A Il

where AV is given by (6). The echo area is therefore of
the form

2

; (18)

B

Lo+ Z;

[

A -

A? T

where

Codr s\
A = llm—’<——> (Zn _— Zl),

roe n l

4w/ r\?
B = lim — <‘> VATE
oo \ [
The Z parameters can be obtained from (9) and (10)
using (13) as the field from 7;. Note that }Al 2/ is o /N2
when Z;= =, that is, when the scatterer terminals are

open circuited. The scatterer is then unloaded, and one
can use the known stationary formula’

(] o)

(Zn - Z1) = )
]12ff E12'J12d5

where Jy» is the current on the open-circuited scatterer
when it is excited by the incident plane wave, and
E; is the corresponding field.

An explicit formula for 4 is obtained by using (13),
(14) and (20) in the first equation of (19). The result is

N\ 2
(kff ey, Jiads
_
£y
ff E12']12d3

which is still stationary. For a first-order approxima-
tion to E, one can assume Ej=E;j given by (13) and
(14). Then from (9) and the first equation of (19) one

obtains
B = j—(—éff ey -]ds)2
4w \ T £ ’

where J; is the current on the scatterer when excited
by I, at its terminals. Procedures for obtaining higher-
order approximations to B are discussed in the Appen-

dix. Finally,
—1
e = 1?2 ff ExJuds

7 Harrington, op. cit., sect. 7-10.

(19)

(20)

A

) (21)

(22)

(23)
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is the well-known stationary formula for the input im-
pedance to the sca tterer when viewed as a transmitting
antenna.

The formulation of this section considers only
linearly-polarized incident plane waves. The case of
arbitrary polarization can be treated as the superposi-
tion of two linearly-polarized waves. The general pro-
cedure is given by Prof. Kouyoumjian.®

IV. LoaDED DipoLEs

The unloaded dipole has been analyzed by Prof. Tai,’
and the loaded dipole by Prof. Hu.® Because Prof. Hu's
results are difficult to specialize to short dipoles, and
because it is desired to illustrate the application of the
general formulas, the equations for short dipoles will be
developed here.

Fig. 3 represents a short center-loaded dipole in a

z

—’1TI‘_ ea

TEi Zj b

Fig. 3—A center-loaded dipole in a plane-wave field.

plane-wave field. When the dipole is excited by I» across
its terminals the current can be approximated by

_ I (1 2 . ‘>
]2—11;27”1 b )

where ¢ is the wire radius and b the dipole length. This
current can be considered to be a filament for calculating
B; hence from (19)

[k b/2 2 2_ ] N -
B:;[Ef_bﬂIQ(l —7|Zl)d2>:l _ET@Z)) -

The derivation of input impedance for dipole antennas
can be found many places. For the current of (24), one
can approximately evaluate (23) as

7 [(kb)‘“’ 31n(28/a) — 7]
“oml 12 7 kb '

(24

22 (26)
When the dipole is open circuited and excited by the
incident plane wave the current can be approximated by

b b
jlgzu,[coska! —:)—coskj}. (27)

s R. G. Kouyoumjian, “The back-scattering from a circular loop,”
Appl. Sci. Research, vol. 6, sec. B, no. 3, pp. 165-179; 1956.

o C. T. Tai, “Electromagnetic back-scattering from cylindrical
wires,” J. Appl. Phys., vol. 23, pp. 909-916; August, 1952,
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The evaluation of (21) is then similar to the evaluation
of (25) and (26), the result being

—j(kb)?

~ 96[in (5/a) — 2] | (28)

The above evaluations give good accuracy for kb <1. For
longer dipoles one can use Professor Hu's results.?

Three special cases of interest are 1) the unloaded di-
pole, Z; =0, 2) the resonant dipole, satisfying (12), and
3) the open-circuited dipole, Z.=«%. For the short
unloaded dipole, A is small compared to the second
term of (18), and the first term of (26) is small compared
to the second term. One then has

T (Rb)S
A 64r[31n (2b/a) — 7]° (29)

For resonance, Z1 should be an inductor adjusted ac-
cording to (12); hence,

3In(2b/a) — 7

75 = jul = j o

(30)

Now Z 1 just cancels the second term of (26), and one has
for the short resonant dipole

o 9
— =~ — = 0.716.
A2 Iz

(31)
Thus, the echo area of a small loss-free resonant dipole is
independent of its physical size. This is analogous to the
case of a small receiving dipole, which has an effective
aperture independent of its physical size.!® For actual
dipoles, losses due to thefinite resistivity of the conductor
will substantially reduce the echo area of very small
dipoles. This is condered in Section VII. When Z,=
(the open-circuited case), only the first term of (18)
remains and

T (kb)®
N2 9216x[ln (b/a) — 2|2 (32)

This is the smallest possible echo area for a short dipole
in the given orientation. For arbitrary orientations, all
of the above echo areas should be multiplied by sin* 8,
where 6 is the angle between the dipole axis and the E
vector of the incident wave.

Fig. 4 illustrates the variation of echo area with fre-
quency for dipoles of fixed dimensions. The case
b/a=150 is shown. Curve (a) is for an unloaded dipole,
curve (b) is for a dipole continually tuned to resonance
(Z1 is varied as N is varied), curve (c¢) is for a dipole
tuned to resonate when b=2A/10 by a fixed inductance
L, and curve (d) is for an open-circuited dipole. The

0 J. D. Kraus, “Antennas,” McGraw-Hill Book C
New York, N. Y., p. 50; 1950. ook Company, Inc,
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(a)

sl

0. 001
0 I 2 3 4 5 6
kb

Fig. +—Echo area of (a) unloaded dipole, (b) resonant dipole, {c)
dipole resonated by fixed L, and (d) open-circuited dipole. b/a
=150.

numerical values were obtained from the above small-
dipole formulas when kb <1, and from Professor Hu's
calculations when ko> 1.

Note that the input impedance to a short dipole,
(26), is of the form of that for a series R-C circuit. When
tuned by an inductance, the short dipole behaves
similary to a series R-L-C circuit. Heunce, resonance
curves for short dipole scatterers are about the same
as a series R-L-C resonance curve. A quality factor de-
fined as

_ ‘ Im Z;zg
N Re Zgz

(33)

has approximately the same relatiouship to the width of
the echo area resonance curve as the Q of an R-L-C
circuit has to the width of its power resonance curve.
For short dipole scatterers

,3n (2b/a) — 7
(kb)®

2

(34)

which illustrates how the Q increases as the dipole is
made shorter. The Q of the loss-free A/10 dipole of
curve (c) of Fig. 4 is 485. Conductor losses will, of
course, materially reduce the Q of very short dipoles. If
a short loss-free dipole is resonated by a fixed induct-
ance at a frequency w,, then at some other frequency w
in the vicinity of resonance

o 9 |:1 + 2<¢0r\ 4<wr w>2:|1
A? B dr ¢ w) w Wy '

This result is obtained from (18) using (25), (26), (30),
and neglecting 4.

(35)
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V. Loapep Loors

Unloaded wire loops in a plane-wave field have been
analyzed by Professor Kouyoumjian.8 A general
analysis of loaded loops of arbitrary size has not yet
appeared in the literature. An analysis of small loaded
loops in a plane-wave field is given in this section.

Fig. 5 represents a small circular loop of wire, loaded
by an impedance Z;. When the loop is excited by a
source I, across its terminals, the current is approxi-

mately uniform, that is,
12 = IQH¢,, (36)

where uy is the unit ¢-directed vector. From (22) one
calculates

7 k 2T ) d 2
B =—|— f 61(1:4/23 sin mu:_ud>]2 *d(b]
4:77' ]2: 0 2

nw 4
~ = (D (37)

Fig. 5—A loaded loop in a plane-wave field.

The input resistance to a small loop with constant cur-
rent is well-known and given by
nw
RC (222) = % (kd)4. (38)

The input reactance to a small loop is simply wL where
L is the low-frequency inductance; hence,

Im (Zs5) = nk—j{ln (%j) — 2}.

When the loop is open circuited and excited by a plane
wave, the current distribution depends markedly on
the position of the loop terminals. When they arc along
the z axis, as shown in Fig. 5, the current can be approxi-
mated by

(39)

112 = Uy sin &. (40)

One can then evaluate A according to (21). The result
is
gu(kd)?
T 16[ln (4d/a) — 2]

(+1)

The assumed currents (36) and (40) are just the first
two terms of the expansion used by Professor Kouyoum-
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jian, and alternatively (37) and (41) could be ab-
strected from his small-loop formulas. The above
formulas give reasonably accurate results when kd <1.

The three special cases 1) an unloaded loop, 2) a
resonant loop and 3) an open circuited loop, will now be
considered. For the unloaded loop, Z.=0, (38) is
small in magnitude compared to (39), and (26) reduces
to

o O (kd)®

N 1024[In (4d/a) — 27 (42

This is identical to Professor Kouyoumjian's small
loop result. For resonance, Z, should be a capacitor ad-
justed according to (12); hence,

1 qkd 4d
Zp = —=— |:1n<— —21.
joC 2 a
Now Z;, cancels (39) and Zs, is given by (38). The first

term of (18) is then negligible compared to the second
term, and

(43)

o 9
— ~ — = 0.716.

2
Yy

(44)

Note that this is identical to the echo area of the short
resonant dipole (31). Again conductor losses will ma-
terially reduce ¢ for very small loops, as discussed in
Section VII. When the loop is open circuited (Z; = «),
only the first term of (18) remains and

o w(kd)® .
A 256[In (4d/a) — 2]°

(45)

The open-circuit echo area is sensitive to the position
of the loop terminals, but it is always smaller than the
short-circuit echo area (42) for small loops. When the
loop of Fig. 5 is rotated about the z axis through an
angle ¢, the parameter B, (37), should be multiplied by
sin®@. This results in (44) being multiplied by sin8, and
(42) multiplied by (24sin26)2/9. Eq. (45) is unchanged.

Fig. 6 shows the variation of echo area with fre-
quency for loops of dimensions d/ea=200. Curve (a)
is for an unloaded loop, curve (b) is for a loop con-
tinuously tuned to resonance, curve (c) is for a loop
tuned to resonate when d =\/10 by a fixed capacitance
C, and curve (d) is for an open-circuited loop. These
curves are only approximate because calculations for
the general loaded loop are not available. For kd <1, the
small loop formulas can be used. Some points on the
unloaded-loop curve were abstracted from Professor
Kouyoumjian's calculations.

Just as for the short dipole, the small loop behaves
similarly to a series R-L-C circuit. The quality factor is
again defined by (33), which, for small wire loops, be-
comes

N ﬁ In (4d/a) — 2 .

T (kd)? (46
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Fig. 6—Echo areas of (a) unloaded loop, (b) resonant loop, (c)
loop resonated by fixed C, and (d) open-circuited loop. d/a
=200.

The Q of the loss-free N/10 loop (curve (c) of Fig. 6) is
292. This would be reduced by conductor losses for an
actual loop. If a small loss-free loop is resonated by a
fixed capacitance at a frequency w,, then at some other
frequency w in the vicinity of resonance

o 9 [1 i Qo(wT>s(w wr)2:|—1

A2 B 4 13 Wy w )
This equation is obtained from (18) using (37)-(39),
(46) and neglecting A.

(47)

VI. SMALL SCATTERERS IN AN ARBITRARY FIELD

For the general problem of back scattering, Fig. 1, the
back-scattered voltage is always given by (6). In gen-
eral, the presence of the scatterer (object 2) modifies the
current on the originally excited object (object 1), and
vice versa. The Appendix considers the complete
formulation of the problem taking into account this
proximity effect. For this section it is assumed that the
scatterer is small enough and far enough from object 1
to neglect such interaction. In other words, it is assumed
that the source of the field to be measured is not
materially changed by the introduction of the scatterer.
Then Z11=Z;, and the first term of (6) is small. When
the scatterer is small and resonant, (Zy —Z;) is negli-
gible compared to the second term of (6). [For example,
compare curves (c) with (d) in Figs. 4 and 6.] Further-
more, Zs is a characteristic of the scatterer alone.
Hence, when the proximity effect is neglected, only the

parameter
e
-Jods
17, 1°J2

Ziyy = (48)
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depends upon the field into which the scatterer is
placed.

Let r=u,x+u,y+u.z denote the radius vector from
the coordinate origin (chosen at the midpoint of the
scatterer) to a field point. Let E(r) = E; (x, v, z) denote
the field into which the scatterer is introduced. Then, in
the vicinity of the origin, E can be expanded in the
Taylor series

E(r) = E(0) + (- V)EQ) + - - -, (49)
where the notation (r-V)E(0) means that r is set equal
to zero after differentiation in E, but not in r. The higher
order terms of the expansion can be neglected if r is
small enough.

Consider first the small tuned dipole scatterer, Fig. 3.
Let I(z) denote the current on the dipole when it is
excited by I,=I(0) at its terminals. Then

—1 b/2
f ITu,- Edz,
Iy J 4y

where E is given by (49) with r=u,z. For small b, one

has
—1 b/2 dE.(0)
f I |:Ez(0> +z :Idz.
—b/2 J

s z

Z12 =

(50

ATE S (51)

If the dipole terminals are centered, I(2) is an even func-
tion of z, and the first term of the integrand is odd.

Then
b/2 —
E.,(0) f rds = 2
—b/2 11[2

-1

AT
Il

EA0), (52)

where p, is the current moment of the dipole. Hence,
Zy; 1s proportional to E,(0), and AV is proportional to
E,2(0). The scattered voltage due to a small dipole in
an arbitrary field is therefore proportional to the
square of the component of E along the wire, and the
dipole scatterer can be used to measure electric fields.
Note that this is true for a tuned dipole only if it is
center loaded, else the second term of (51) does not
vanish.

Now let the scatterer be a small tuned loop, such as
shown in Fig. 5. When excited by I, the loop current
is approximately uniform. Hence

-1
fng-dI,
11[2

where the integral is taken once around the loop. Using
(49) in (53), one has for small r

le = (53)

Zl2 =~

f [EW©) + (r-v)E(0)] 4L (54)

1

The first term integrates to zero. To evaluate the second
term, let the loop (planar, but not necessarily circular)
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lie in the 2=0 plane., Then dI=u.dx-+u,dy and
—17 9E,(0) dE.(0)
Zyo = —— xdx d
: Zl[axf +c9y.%yy
dE,(0) dE,(0)
+ f vdy + ydy:I. (55)
dx dy
The integrals are
fxdx =fydy =0 (56)
fxdy = —fydx =S, (37)

where S is the area of the loop. Eq. (55) then becomes

—1 [3E, 9JEN i
Z12 = —85— — = —‘SB;
1 dx v I

(58)

or, putting it into a form independent of the choice of
coordinates

jw
Z12zI—S'B(O), (59)
1

where S is the vector area of the loop. Thus, Z;; is
proportional to the component of B in the direction of
the loop moment (perpendicular to the loop area). For
example, for the loop of Fig. 5, S=(7r/4)d?u., and Z15 is
proportional to B,. Hence, the scattered voltage due to
a small resonant loop is proportional to the square of the
component of B perpendicular to the loop, and the
scatterer can be used to measure magnetic fields. This
result is valid for loops of arbitrary shape. It is not
valid for untuned loops, because the first term of (6) is
then of the same order of magnitude as the second term.
Even for resonant loops, if E were very large and B very
small at some point in space, the scattered voltage would
no longer be a measure of B because the first term of (6)
might be appreciable.

VII. EFFEcT OF WIRE RESISTANCE

The effect on echo area and back scattering due to the
finite conductivity of wires easily can be incorporated
into the previous solutions. Assume that the wire has
sufficiently high conductivity that 1) the current dis-
tribution on the scatterer is not materially changed from
that on a perfect conductor, and 2) the resistance per
unit length R of the wire can be approximated by the
surface resistivity divided by the circumference of the
wire. Then, for nonmagnetic conductors,

Ro Lo /0
2ra 20 a oA

]

(60)

where g ==wire radius and ¢ =conductivity of the wire.
In most small scatterer applications the first term of (6)
is negligible compared to the second, and Z;» depends
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only on the current distribution. Hence, the only sig-
nificant change introduced by wires of finite conductiv-
ity occurs in the calculation of Zz. This change can be
accounted for by adding an I2R loss to the previously

derived radiation impedance. Hence,
ZZZ = -Rloss + Z220, (61)

where Zy? is the loss-free radiation impedance given by
(23). For wire scatterers,

I?Rdl.

wire

1
Rloss =~ 72‘2— (62)
However, when the scatterer is loaded, there is an addi-
tional loss in the loading impedance

Zy= Ry +jX:. (63)

For resonant dipoles, this Ry, of the resonating inductor
is more important than Ry in limiting the back-
scattered field from short dipoles.

For example, for a short dipole scatterer, the current
is given by (24) and

1 b/2 . 2 N\ 2
Rlosszm—f I2Z<1—_121)Rd2
1.2 J 49 b
1 b 30

64
3 3a aA (64)

For a copper dipole (¢ =5.7 X10") with b/a =150, oper-
ating at A=0.1 m, one has Riss=0.12 ohm. If the
dipole is 5=A/10 in length, then from (6) one finds
Re (Z3°) =2 ohms. This is much larger than the loss
resistance. However, one needs a resonating inductor. If
the inductor is constructed of the same wire as the
dipole, the wire will be of the order of A\/2 in total length.
It then has a resistance of

Ry =~ R(\/2) = 1.8 ohms, (65)

which is approximately equal to the radiation resistance.
The Q of the scatterer plus Zy is then approximately
half of the 485 unloaded Q calculated in Section IV, or
Q=2350. This will reduce the echo area by about 3 db
over what it was in the loss-free case. In general, for
short resonant dipole scatterers

1 1 n 1

S,

Q Q0 Qo
where Q, is the loss-free @ of the dipole, given by (34),
and Qy is the Q of the resonating inductance.

For the wire loop, the terminating impedance is a
capacitor, which is usually high Q. Then the principal
losses are those of the loop, given by

d 30
Rioss = R(wd) = 71— —_— -
a 2

(66)

(67)

For example, taking a copper wire loop having d/a =200
and A =0.1 m, one calculates Ri,ss = 1.45 ohms. Consider-
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ing the loop to be d=2A/10 in diameter, from (38) one has
Re (Z»°) =1.9 ohms. In this case the loss resistance is of
the same order of magnitude as the radiation resist-
ance, and the Q is reduced from 292 in the nonlossy
case to =165 in the lossy case. Neglecting losses in the
resonating capacitor, one has in general for small

resonant loops
1 1 [1 n
Q O

where () is the loss-free Q, given by (46), and Re (Z9) is
given by (38).

Rloss 68
s (69

VIII. TUNING AND MODULATION

The use of resonant scatterers for field measure-
ments requires some sort of tuning procedure. There are
basically three ways that this might be accomplished:
1) the load impedance Z;, can be varied, 2) the dimen-
sions or geometry of the scatterer can be varied, and 3)
the frequency of the field can be varied. At the longer
wavelengths, say of the order of several meters, ordi-
nary variable inductors and capacitors can be used for
tuning according to method 1). As the wavelength is
made shorter, the construction of variable reactors be-
comes more difhcult, and method 2) becomes attrac-
tive. For example, consider the scatterer of Fig. 7(a).

==

(2) (b)

Fig. 7—Small resonant scatterers. (a) Dipole. (b) Two-turn loop

It consists of a piece of wire of length a little less than
N/2, with the central portion wound in a loosely-
spaced coil. If one stretches the dipole in the axial direc-
tion, the capacitive reactance of the dipole changes
rapidly [see (26)] while the inductive reactance of the
coil changes very little. Hence, the dipole can be tuned
by small adjustments of its length. Similarly, Fig. 7(b)
shows a loop scatterer that can be tuned by compressing
it. The loop consists of two or more loosely-spaced turns
of wire with the two ends connected together. The total
length of wire is a little more than one wavelength,
(Hence, for a two turn loop, d=\/6; for a three turn
loop, d=X/9.) As the loop is squeezed closer together
(in the axial direction), the coupling between adjacent
wires increases and the loop resonates at shorter wave-
lengths. Finally, if it is desired that scatterers of fixed
dimensions and loads be used, the signal frequency can
be varied [method 3)]. In this case one constructs a
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scatterer to resonate at approximately the desired fre-
quency, and then the signal oscillator is tuned.

It is easier to separate the scattered signal from the
incident field if the former is modulated and the latter
not modulated. For this reason diode loads with a modu-
lated bias have been used with untuned dipole and loop
scatterers.®* Mechanical rotation of unloaded dipoles
has also been used to obtain modulation of the scattered
signal.? These methods of modulation can continue to
be used with resonant scatterers. However, some alter-
native modulation methods can be used with resonant
scatterers that cannot be used with nonresonant ones.
Because the resonant scatterers are high (, small
changes in either 1) the tuning reactance, or 2) the scat-
terer dimensions, or 3) the signal frequency can produce
large changes in the scattered field. To utilize possibil-
ity 1), one could either mechanically or electrically
modulate the tuning reactance. For 2), a vibration of the
scatterer could be used to modulate the scattered signal.
The scatterer might be made mechanically resonant at
the desired modulation frequency, as well as electrically
resonant at the signal frequency. Then the desired
mechanical vibration could be obtained from a sound
wave impinging upon the scatterer. Finally, to utilize
method 3) the original signal frequency could be fre-
quency modulated. The scattered signal would then be
amplitude modulated. Only a small frequency devia-
tion, of the order of 1/Q of the scatterer, would be
needed for the frequency modulation of the signal
generator. Note also that the modulation frequency of
the scattered amplitude-modulated signal from the
scatterer would be twice the modulation frequency of
the original frequency-modulated signal, if the center
frequency is the resonant frequency ol the scatterer.
To take full advantage of this difference between the
scattered signal and the incident signal, special de-
tection circuits can be devised. For example, an AM
detector having a tuning @ large compared to the
Q of the scatterer, and 1/Q small compared to the
frequency deviation, can be used. This assumes that
the scatterer is the only high Q object resonating at the
test frequency.

APPENDIX

A TORMULATION OF THE GENERAL
Two-PorT PROBLEM

The two-port problem of Fig. 1 can be viewed as a
pair of coupled antennas. Profs. Hu and Hu have con-
sidered the general variational solution for a system of
N coupled linear antennas.™ Their analysis is actually
applicable to a general N-port system of conducting
bodies if one makes the following simple changes. Re-
place all scalar Green’s functions by tensor Green’s

M. K. Hu and Y. Y. Hu, “Successive variational approxima-
tions of impedance parameters in a coupled antenna system,” TRE
TRANS. ON ANTENNAS AND ProracatTioN, vol. AP-7, pp. 373-379;
QOctober, 1959.
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functions, all filaments of currents by surface currents,
and all line integrals by surface integrals.

Combining (9) and (10) of Section Il one has the
variational formula

Z.,= }_;%ff ds’ff ds]l(r)-rl‘(r, - J,(")
1

— (T ).

(69)
II;

The last equality defines the scalar product (J;, J;). In
general, J; consists of current induced on object 7 by
I,, denoted by J,,, plus current induced on object j by
I,, denoted by J,,; hence,

f1:J11+J12 J2=]22+]21.

Following Professors Hu, one assumes trial currents of
the form

Ju=Jitadi+ afe+ -+ anfu
Ji = axrpfara + -+ andy

Joo = by + by + - -+ badi

Joo = Iy + bypndarga + - - - + byly

(70)

(71)

where the a, and b, are variational parameters, and the
vector currents J, and I, satisfy

J.=1,=0 at terminals 1 and 2 (72)

if #5£0, and

I :f.jo'n X dl I, =ffo-n><dl, (73)

where these integrals are taken around terminals 1 and
2, respectively. In other words, the entire excitation
currents I, and I, are obtained from fo and fo, and all
other trial currents are zero at the terminals. Professors
Hu show that one should choose the number of varia-
tional parameters ¢, equal to the number of b,, since
the order of approximation corresponds to the smallest
number of a, or b,. It is also shown below that there
should be as many variational parameters in J;; as in
J.i, else the solution for Z;, will diverge as the objects
are moved farther apart. In other words, M and N
should be the same numbers in J; and J;, as is shown
in (71).

Substitution of (70) and (71) into (69), and setting
0Z,,/0a,=0Z,;/0b,=0 {or all n, yields the following
formules.!! For Zi2 one has either

Py -

Zos = (To, Jo) = [(Zo, T (Lo, Jo) - - (Do, T3]

(fl,jl) (il,jz)"'(fl,jN) “1((I1,T0)
(I, J) Ty T2 - - (I, Tw) (I, 7o) (74)
(In, Ty Tn, 7o) - - Uy, Ty ) T, To)
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or alternatively,
(fﬂ, jo)
(fla jO)

(o, J0) -+ - (Lo, Jw)
(T, Jy) - (T, Ty)

Iv,Jo Tw, Ty -+ - Iy, Tw)
(ilajl) T <j17jN)

(75)

(iN’jl) T (fNyjN)

where the scalar products (7,, J,) are as defined by
(69). Formulas for Zy; are (74) and (75) with all I.s re-
placed by the corresponding J.’s. Formulas for Zs are
(74) and (75) with all J,’s replaced by the correspond-
ing I,'s.

To illustrate the difficulty that occurs if J,; does not
have the same number of variational parameters as

J.;» suppose
]12 = dlfh
]21 = blfl-

]11 = jo
- 76
Jo2 = Iy ( )

[This choice was purposely excluded by (71).] The
mutual impedance (74) or (75) then becomes

(jO)jl)(jlijO)

Zyo = (Io, Jo) — =
12 ( 0 0) (Il, ]1)

(7

As the two objects are separated

(io, fo)—)o (fly jl)—_>07 (78)
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because these products involve currents on different
objects, and

(jo, f1) — Co1 (fl, jo) — Cy (79)

(C's denote constants) because they involve currents on
the same object. Hence, as the two objects are separated,
by (77) one has Z;3;— «, an impossibility. This absurd
result can be explained by noting that
(jly jO)
a; = — —

(ih jl)

(80)

in the variational solution, and, hence, no value of ¢; can
improve the solution. The parameter b, behaves simi-
larly. One can view this as a poor choice of trial func-
tions. However, if Ji2 is chosen to have the same num-
ber of variational parameters as Ji, and similarly
for Jis and Ju, as required by (71), then the difficulty
does not arise. To show this, note that, as the objects are
separated, the denominator of (75) becomes of the form

(81)

which is finite. If J;, does not have the same number of
variational parameters as J,,, then one or more rows or
columns of zeros appear in the “constants” sections of
(81), and the denominator of (75) vanishes as the ob-
jects are separated. Of course, no such difficulty arises
in the calculation of Zi; and Zs,.

Wide-Band Matching of Lossless Waveguide Two-Ports*

DARKO KAJFEZt

Summary—A new procedure of matching is presented, based
in the equations which transform the output reflection coefficient
of a lossless two-port network into the input reflection coefficient.
The parameters of the equations are the residual reflection coeffi~
cients which can be easily measured. The optimum reflection coeffi-
cients which have the minimum frequency variation are computed
for the specific case when the frequency variation of the residual re-
flection coefficients can be approximated by a circular arc in the
Smith diagram. An illustrative example is given to explain the deter~
mination of the position and the size of the inductive obstacles that
match a waveguide two-port structure within a wide frequency band.

* Received by the PGMTT, October 17, 1961; revised manu-
script received, January 2, 1962.
T Institute for Automation, Ljubljana, Yugoslavia.

I. INTRODUCTION
T HERE ARE a considerable number of waveguide

structures that can be represented by an equiv-

alent two-port network. Waveguide bends,
rotary joints, coaxial-to-waveguide transducers and
many other waveguide components are typical ex-
amples of lossless two-port waveguide structures. Fre-
quently these components are not completely matched
and, in spite of careful design, they produce a dis-
continuity in the waveguide system. The aim of this
article is to present a method that will make it possible
to match the residual reflections of a two-port wave-



