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the final results of this calculation agree with the ex-

perimental points to within about two per cent over the

frequency range in which the calculations were per-

formed. Further refinement is not warranted by the ex-

perimental data, and in any case a calculation from

Hill’s equation using a greater number of terms in the

Fourier series for F(z) becomes too difficult.

I-V. CONCLtTSIONS

From the agreement between the theoretical curve

and the experimental points on Fig. 4 one can conclude

that the analysis of these modulated surface-wave struc-

tures by means of a .Mathieu equation is fairly accurate,

in spite of the rather wide slots in these structures, the

crudeness of the approximation to F(z), and the fact

that d and i were of’ the same order of magnitude. one

notes, as is to be expected, that the agreement is better

in those cases where the modulation is less severe, but

even where F(z) varies over a four-to-one range, the re-

sult is not greatly in error.

Coucerlling the properties of modulated corrugated

rods in general, one notes that VP is more nearly inde-

pendent of frequency than for a uniform rod, The

tendenc~ of v,, to decrease with decreasing wavelength

is compensated by the fact that CO moves closer to the

lnillimu~n of F(z) as the form of F(z) becomes more

peaked. On the other hand, the effect of increasing the

modulation, and hence C.’l, for a given Co, in the range of

parameters used here is to decrease m, or increase VP,

but this is not universally true nor is it the dominant

effect here. There is also very little difference between

structures A and B with respect to dispersion.

Finally, with more extensive observation over the

possible range of q and ~, one should be able to demon-

strate the existence of the stop bands predicted in

Fig. 6, but no such effect was observed in the experi-

ments performed here.
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Summary—A general formulation for the back-scattered field
from loaded objects is given. It is shown that small resonant objects

produce a much greater back-scattered field than small nonresonant

ones. The theory is applied to short dipoles and small loops. The use

of small resonant scatterers to measure electric and magnetic fields

by scattering techniques is discussed. Resonant scatterers are found
to have several advantages over nonresonant scatterers when used
for field measurements.

I. INTRODLTCTION

T
HE FIELD scattered by short straight wires has

been used to measure microwave electric fields.’-3

To separate the scattered field from the incident

field more easily, the scattered field has beeu modulated

by mechanical methods,’ and by diodes.3 filicrowave
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magnetic fields have been measured by the field

scattered from a small loop of wire, using two diodes

such that they modulate the field due to the magnetic

moment of the loop, but do not modulate the field due to

the electric moment. 4 Scattering techniques for measur-

ing electric and magnetic fields are attractive because

no receiving equipment or transmission lines need be

connected to the scatterer. This is in contrast to methods

which detect the signal received by probes and loops;

hence, scattering methods usually disturb the field to be

measured less than do receiving methods.

This paper presents an analysis of small tuned scat-

terers, and proposes their use in scattering methods for

measuring electric and magnetic fields. The use of

resonant scatterers instead of nonresonant scatterers

gives the following advantages: 1) The scattered field

from resonant scatterers is much larger than that from

nonresonant scatterers. Of the order of 30-db improve-

ment can be obtained. 2) The magnetic moment of a

loop scatterer can be greatly enhanced without materi-

ally changing the electric moment. This allows one to

4 M. K, Hu, “On measurement of ~ and ~ field distributions
by using modulated scattering methods,” IRE TRANS. ON MICRO-

WAVE THEORY AND TECHNIQUES, vol. MTT-8, pp. 295–300; May,
1960.
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use a tuned loop scatterer for most magnetic field

measurements without the use of a complicated modula-

tion scheme. 3) If modulation is desired, it can be ac-

complished in several ways not available for non-

resonant scatterers. One can modulate the tuning re-

actance, or vary the scatterer size, or frequency

modulate the field, as discussed in Section VIII. On

the other hand, disadvantages of using resonant scat-

terers are: 1) tuning of the scatterer is required, and 2)

construction of the tuned scatterer is more complicated

than the untuned one.

II. GENERAL THEORY

Fig. 1 represents the general problem of back scatter-

ing from a loaded scatterer. There are two objects, de-

noted by 1 and 2, each having a pair of closely-spaced

terminals, also denoted by 1 and 2. Object 1, exited by a

current source across terminals 1, produces an incident

field. Object 2, loaded by an impedance ZL across termi-

nals 2, represents a loaded scatterer. The back-scat-

tered voltage is defined as the difference between volt-

age appearing across terminals 1 when the scatterer

(object 2 and Z.) is present and when it is absent. The

case of plane-wave back scattering is obtained when

objects 1 and 2 are infinitely

formulation of the problem is

Professor Y. Y. HU for loaded

far apart. The general

similar to that used by

dipole scatterers. 5

Fig. l—The general case of back scattering by a loaded scatterer.

Terminal pairs 1 and 2 of Fig. 1 define a two-port

network. For linear matter,

VI = 21111+ 21212

V~ = 22111 + ZZ212, (1)

where ~~1, 11 and Vt, 12 are the voltages and currents at

terminals 1 and 2, respectively. When all matter is

isotropic, ZIZ = ZZI. When the load impedance ZL exists

across terminals 2,

t’, = – 12ZL. (2)

Using (1) and (2), one finds the voltage at terminals 1 as

(3)

s Y. Y. Hu , “Back-scattering cross section of a center-loaded
cylindrical antenna, ” IRE TRANS. ON ANTENNAS AND PROPAGATION,
vol. AP-6, pp. 140–148; January, 1958.

Now define 1710as the voltage across terminals 1 when

object 2 is absent and 11 is impressed at terminals 1.

Let the input impedance to this one-port network be de-

noted by

(4)

Define the back-scattered voltage as the difference be-

tween the voltage at terminals 1 when object 2 is present

and when it is absent, that is,

AV = ~1 – ~lO. (5)

Then, using (3) and (4) in (5), one obtains

[

2122
AV = (ZII – ZI) –

1
1,. (6)

ZZ2 + ZL

Hence, the general problem of back scattering from a

scatterer loaded by an arbitrary impedance ZL involves

the determination of three parameters: (ZII –ZJ, 21.2

and Zzz.

Variational formulas for impedance parameters are

well known. G Consider objects 1 and 2 to be perfectly

conducting, and let

J,= Current due to source 1, impressed at terminals

i, the other terminals open circuited. (7)

E,= Electric field due to J,.

In general, E; is related to the J, by a tensor (or dyadic)

Green’s function 17 by

E,(r) = ~~ I’(r, r’) .J%(r’)ds’, (8)

where r and r’ denote radius vectors. A stationary

formula for any of the impedance elements is then

Z,j = ~ SsE~ . J,ds.
1,1~

(9)

The formula for 21 is the same as for ZH except that ob-

ject 2 is now absent. Defining

JIO = Current on object 1 due to 1, when object 2 is

absent, (lo)

Elo = Electric field due to JIO,

one has the stationary formula

zl=~
Ss

EIO. JIOds. (11)

These formulas are applied to particular problems by

assuming trial currents and calculating the desired im-

pedances. Adjustable constants (variational param-

eters) can be included in the trial currents and evalu-

ated by the Ritz procedure. A discussion of the evalua-

tion of the Z’s by the Ritz procedure is given in the

Appendix.

GR. F. Barrington, “Time-Harmonic Electromagnetic Fields, ”
McGraw-Hill Boo!i Company, Inc., sect. 7–9; 1961.
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Returning now to (6), one may note that the

term on the right-hand side is maximum when

Z. = – j Im (Z,J,

Small Resonant Scatterers

second

(12)

for passive Zr,. Eq. (12) will be used to define a

resonant scatte~er. When (Zll —Zl) and Re (Zzz) are small,

the scattered voltage is maximum at resonance. It follows

a resonance curve when Z~ is tuned through resonance.

Conducting scatterers small with respect to wave-

length usually exhibit such resonance phenomena.

II 1. PLANE-WAVE B.\cK SC~TTERING

The general fornlulas can be specialized to plane-

wave back scattering as follows. Let object 1 vanish so

that terminals 1 are in empty space. The field of 11

impressed across terminals 1 is then simply the field of

a current element 111 in free space. To be specific, let

111 be z directed and located on the y axis a distance r

from the origin, as shown in Fig. 2. As r+CO one ob-

tains in the vicinity of the origin a plane-wave field

Elo = u, EOe–lkY,

where u.= unit z-directed vector,

(= 2T,A), and

(13)

k = wavenurnber

(14)

where q = intrinsic impedance ( = tip%) and A = wave-
length.

‘T

II t—————— Y

Fig. 2—Plane-wave back scattering is obtained by letting
II recede to infinity.

When the scatterer is present, the incident field in-

duces a current on the scatterer, which in turn produces

a scattered field E,. The component of E. in the direc-

tion of Ill at Ill is called the back-scattered jield. The

area for which the incident field contains sufficient power

to produce, by om]lidirectional radiation, the same

field as is back scattered by the scatterer, is called the

ecko area u of the scatterer. In equation form

,-+cc IB” I

where ut is a unit vector in the direction

of the scattered voltage

U1. E. = AV/1,

(15)

of Ill. In terms

(16)

and so the echo area is given by

167

“=!w”(w+)l%l’ “7)
where ~ T~ is given by (6). The echo area is therefore of

the fornl

u B2
L--–— ,

G=7r z,, + ZL

where

4TYZ()A = lim — ; (ZH – ZJ,
r+m ~

(18)

(19)

The Z parameters can be obtained from (9) and (10)

using (13) as the field from 11, Note that I A ] 2/~ is a/k2

when Z~ = ~ , that is, when the scatterer terminals are

open circuited. The scatterer is then unloaded, and one

can use the known stationary formula’

where Jlt is the current on the open-circuited

(20)

scatterer

when it is excited by the incident plane wave, and

E12 is the corresponding field.

An explicit formula for .4 is obtained by using (13),

(14) and (20) in the first equation of (19). The result is

(21)

which is still stationary. For a first-order approxima-

tion to E, one can assume El= EIO given by (13) and

(14). Then from (9) and the first equation of (19) one

obtains

where JZ is the current on the scatterer when excited

by 12 at is terminals. Procedures for obtaining higher-

order approximations to B are discussed in the Appen-

dix. Finally,

–1
22, = ~ SJEz . J’ds

7 Harrin;@n, OP. cit., sect. 7–10

(23)
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is the well-known stationary formula for the input im-

pedance to the scatterer when viewed as a transmitting

antenna.

The formulation of this section considers only

linearly-polarized incident plane waves. The case of

arbitrary polarization can be treated as the superposi-

tion of two linearly-polarized waves. The general pro-

cedure is given by Prof. Kouyoumjian. S

IV,. LOADED DIPOLES

The unloaded dipole has been analyzed by Prof. Tai,’

and the loaded dipole by Prof. HU.5 Because Prof. Hu’s

results are difficult to specialize to short dipoles, and

because it is desired to illustrate the application of the

general formulas, the equations for short dipoles will be

developed here.

Fig. 3 represents a short center-loaded dipole in a

Fig. 3—A center-loaded dipole in a plane-wave field.

plane-wave field. When the dipoie is excited by 12 across

its terminals the current can be approximated by

J2=u+i(’-w (24)

where a is the wire radius and b the dipole length. This

current can be considered to be a filament for calculating

B; hence from (19)

The derivation of input impedance for dipole antennas

can be found many places. For the current of (24), one

can approximately evaluate (23) as

[

q (kb)’ 3 in (2b/a) – 7
Z22 = — —–.’/’

1
(26)

2!r 12 kb “

When the dipole is open circuited and excited by the

incident plane wave the current can be approximated by

J=uz[cos(,z, -+-+] (27)

a R. G. Kouyoumjian, “The back-scattering from a circular loop, ”
Ap#cSc~ R~eslarck, vol. 6, sec. B: no. 3, pp. 165:179; 1956.

‘[Electromagnetic back-scattering from cylindrical

wires, ‘“ Y. “/l@@l’. Phys., vol. ?23,pp. 909–916; .\LlgUSt,1952.

The evaluation of (21) is then similar to the evaluation

of (25) and (26), the result being

A=
–j(kb)’

96[ln (b/a) – 2] “
(28)

The above evaluations give good accuracy for kb <1. For

longer dipoles one can use Professor Hu’s results.5

Three special cases of interest are 1) the unloaded di-

pole, Z.= O, 2) the resonant dipole, satisfying (12), and

3) the open-circuited dipole, Z~ = ~. For the short

unloaded dipole, A is small compared to the second

term of (18), and the first term of (26) is small compared

to the second term. One then has

o- (kb)’

:’ 64r[3 in (2b/a) – ~]’
(29)

For resonance, ZL should be an inductor adjusted ac-

cording to (12) ; hence,

3 in (2bta) – 7
Z~=jaL=j

kb “
(30)

Now ZL just cancels the second term of (26), and one has

for the short resonant dipole

(r 9
— = 0.716.

S=+r
(31)

Thus, the echo area of a small loss-free resonant dipole is

independent of its physical size. This is analogous to the

case of a small receiving dipole, which has an effective

aperture independent of its physical size. 10 For actual

dipoles, losses due to the finite resistivity of the conductor

will substantially reduce the echo area of very small

dipoles. This is condered in Section VII. When Zh = ~

(the open-circuited case), only the first term of (18)

remains and

u (kb)’
—=
A’ 9216r[ln (b/a) – 2]’ “

(32)

This is the smallest possible echo area for a short dipole

in the given orientation. For arbitrary orientations, all

of the above echo areas should be multiplied by sin4 0,

where O is the angle between the dipole axis and the E

vector of the incident wave.

Fig. 4 illustrates the variation of echo area with fre-

quency for dipoles of fixed dimensions. The case

b/a = 150 is shown. Curve (a) is for an unloaded dipole,

curve (b) is for a dipole continually tuned to resonance

(ZL is varied as A is varied), curve (c) is for a dipole

tuned to resonate when b =A/10 by a fixed inductance

L, and curve (d) is for an open-circuited dipole. The

‘0 J. D. Kraus, “Antennas,” L’IcGra\v-Hill Book Company, Inc.,
New York, N. Y., p. 50; 1950.
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Fig. 4—Echo area of (a) unloaded dipole, (b) resonant dipole, (c)
dipole resonated by fixed L, and (d) open-circuited dipole. b/a
= 150.
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numerical values were obtained from the above small-

cfipole formulas when kb <1, and from Professor 1-Iu’s

calculations when .kb> 1.

Note that the input impedance to a short dipole,

(26), is of the form of that for a series R-C circuit. When

tuned by an inductance, the short dipole behaves

sirnilary to a series R-L-C circuit. Hence, resonauce

curves for short dipole scatterers are about the same

as a series R-L-C resonance curve. A quality factor de-

fined as

(33)

has approximately the same relationship to the width of

the echo area resonance curve as the Q of an R-L-C

circuit has to the width of its power resonance curve.

For short dipole scatterers

3 In (2b/a) – 7
Q R: 12

(kb)’
(34)

which illustrates how the Q increases as the dipole is

made shorter. The Q of the loss-free A/10 dipole of

curve (c) of Fig. 4 is 485. Conductor losses will, of

course, materially reduce the Q of very sl~ort dipoles. If

a short loss-free dipole is resonated by a fixed induct-

ance at a frequency co,, then at some other frequency u

in the vicinity of resonance

%=:[1+Q2(34(HT’ ‘3’)
This result is obtained from (18) using (25), (26), (30),

and neglecting .4.

V. LOADED LooPs

Unloaded wire loops in a plane-wave field have been

analyzed by Professor Kou youmjian. s A general

analysis of loaded loops of arbitrary size has not yet

appeared in the literature. An analysis of small loaded

loops in a plane-wave field is given in this section.

Fig-. 5 represents a small circular loop of wire, loaded

by an impedance Z~. When the loop is excited by a

source 1! across its terminals, the current is approxi-

mately llniform, that is,

12 = Izub, (36)

where Ud is the unit @-directed vector. From (22) one

calculates

=— : (kd)’. (37)

fEi

@

d/2 Zra

Y

~+
ZL

Fig. 5—.\ loaded loop ill a plane-wa~-e field.

The input resistance to a small loop with constant cw--

rellt is Ivell-known and given by

Re (ZZJ = ; (kd) 4. (38)

The input reactance to a small loop is simply UL where

L is the low-frequency inductance; hence,

‘m(z”)‘H’n(%21 ‘3’)
Ih’hen the loop is open circuited and excited by a plane

wave, the current distribution depends markedly on

the position of the loop terminals. When they arc along

the z axis, as shown in Fig. 5, the current can be approxi-

mated kly

112 = u+ sin +. (’lo)

One can then evaluate .-1 according to (21 j. The resu~t

is

‘J =
jm(kd)’

16[1u (4di’a) – 2] “
(41)

The assumed currents (36) and (40) are just the first

two ternls of the expansion used by Professor Kouyoum-
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jian, and alternatively (37) and (41) could be ab-

stra cted from his small-loop formulas. The above

formulas give reasonably accurate results when h?< 1.

The three special cases 1) an unloaded loop, 2) a

resonant loop and 3) an open circuited loop, will now be

considered. For the unloaded loop, ZL = O, (38) is

small in magnitude compared to (39), and (26) reduces

to

u 9m(kd)6
(42)

G= 1024[ln (4d/a) – 2]2 “

This is identical to Professor Kouyoumj ian’s small

loop result. For resonance, Z~ should be a capacitor acl-

justed according to (12) ; hence,

“=:=%-TW)-21 ’43)
Now Z~ cancels (39) and ZZZ is given by (38). The first

term of (18) is then negligible compared to the second

term, and

u 9
— = 0.716.

3=47,
(44)

Note that this is identical to the echo area of the short

resonant dipole (31). Again conductor losses will ma-

terially reduce cr for very small loops, as discussed in

Section VII. When the loop is open circuited (ZL = cc),

only the first term of (18) remains and

(T ~(kd) 6

F= 256[ln (4d/a) – 2]’ “
(45)

The open-circuit echo area is sensitive to the position

of the loop terminals, but it is always smaller than the

short-circuit echo area (42) for small loops. When the

loop of Fig. 5 is rotated about the z axis through an

angle f?, the parameter B, (37), should be multiplied by

sinz 0. This results in (44) being multiplied by sin4 O, and

(42) multiplied by (2+sin’0) 2/9. Eq. (45) is unchanged.

Fig. 6 shows the variation of echo area with fre-

quency for loops of dimensions d/a= 200. Curve (a)

is for an unloaded loop, curve (b) is for a loop con-

tinuously tuned to resonance, curve (c) is for a loop

tuned to resonate when d = A/ 10 by a fixed capacitance

C, and curve (d) is for an open-circuited loop. These

curves are only approximate because calculations for

the general loaded loop are not available. For kd <1, the

small loop formulas can be used. Some points on the

unloaded-loop curve were abstracted from Professor

Kouyoumj ian’s calculations.

Just as for the short dipole, the small loop behaves

similarly to a series R-L-C circuit. The quality factor is

again defined by (33), which, for small wire loops, be-

comes

48 in (4d/a) – 2

Q =—
T (kd)’ “

(46)

d/k

Fig. 6—Echo areas of (a) unloaded loop, (b) resonant loop, (c)
loop resonated by fixed C, and (d) open-circuited loop. d/u
=200.

The Q of the loss-free X/10 loop (curve (c) of Fig. 6) is

292. This would be reduced by conductor losses for an

actual loop. If a small loss-free loop is resonated by a

fixed capacitance at a frequency w,, then at some other

frequency w in the vicinity of resonance

:=al+Q’(-38(:-:)2r ’47)
This equation is obtained from (18) using (3’7-(39),

(46) and neglecting A.

VI. SMALL SCATTERERS IN AN ARBITRARY FIELD

For the general problem of back scattering, Fig. 1, the

back-scattered voltage is always given by (6). In gen-

eral, the presence of the scatterer (object 2) modifies the

current on the originally excited object (object 1), and

vice versa. The Appendix considers the complete

formulation of the problem taking into account this

proximity effect. For this section it is assumed that the

scatterer is small enough and far enough from object 1

to neglect such interaction. I n other words, it is assumed

that the source of the field to be measured is not

materially changed by the introduction of the scatterer.

Then 211 =21, and the first term of (6) is small. When

the scatterer is small and resonant, (Zll – Zl) is negli-

gible compared to the second term of (6). [For example,

compare curves (c) with (d) in Figs. 4 and 6.] Further-

more, 222 is a characteristic of the scatterer alone.

Hence, when the proximity effect is neglected, only the

parameter

–1
.Z12 . — SsEl. Jzds

1112
(48)
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depends upon the field into which the scatterer is

placed.

Let r = WY +Ugy +uzz denote the radius vector from

the coordinate origin (chosen at the midpoint of the

scatterer) to a field point. Let E(r) = Ez (x, y, z) denote

the field into which the scatterer is introduced. Then, in

the vicinity of the origin, E can be expanded in the

Taylor series

E(r) = E(O) + (r V)E(O) + .0. , (49)

where the notation (r. V) E(O) means that r is set equal

to zero after differentiation in E, but not in r. The higher

order terms of the expansion can be neglected if r is

small enough.

Consider first the small tuned dipole scatterer, Fig. 3.

Let 1(z) denote the current on the dipole when it is

excited by 12 =1(0) at its terminals. Then

where E is given by (49) with r =wz. For small b, one

has

–1 b/2

21, =— S[ w?.(o) ~,
I E.(o) + z —

1
. (51)

1112 _bj, 82 ‘“

If the dipole terminals are centered, 1(z) is an even func-

tion of z, and the first term of the integrand is odd.

Then

–1 sb/2

Z12 = — Ez(o) Idz =
–p,

— E.(o), (52)
IIIz –b/2 IIIz

where PZ is the current moment of the dipole. I-Ience,

Zlz is proportional to .E.(0), and A V is proportional to

E. Z(0). The scattered voltage due to a small dipole in

an arbitrary field is therefore proportional to the

square of the component of E along the wire, and the

dipole scatterer can be used to measure electric fields.

Note that this is true for a tuned dipole only if it is

center loaded, else the second term of (51) does not

vanish.

Now let the scatterer be a small tuned loop, such as

shown in Fig. 5. When excited by Iz the loop current

is approximately uniform. Hence

–1

$“Z12 “ — I,E . dl,
I,IZ

(53)

where the integral is taken once around the loop. Using

(49) in (53), one has for small r

Z12 =

f

: [E(O)+ (r. v) E(0)] .dl. (54)
II

The first term integrates to zero. To evaluate the second

term, let the loop (planar, but not necessarily circular)

lie in the z== O plane. Then dl=uzdx+uudy and

8EV(0)

$

dEU(0)
+— $1.vdy + —

(3.X t)y
ydy .

The integrals are

$-’’’=$ydy=o
$“9=+d’=s
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(55)

(56)

(57)

where S is the area of the loop. Eq. (55) then becomes

“’+(%+’% ’58)
or, putting it into a form independent of the choice of

coordinates

Z12 = ~;s. B(o), (59)

where S is the vector area of the loop. Thus, 212 is

proportional to the component of B in the direction of

the loop moment (perpendicular to the loop area). For

example, for the loop of Fig. 5, S= (7r/4)d2 uC, and 212 is

proportional to Bc. Hence, the scattered voltage due to

a small resonant loop is proportional to the square of the

component of B perpendicular to the loop, and the

scatterer can be used to measure magnetic fields. This

result is valid for loops of arbitrary shape. It is not

valid for untuned loops, because the first term of (6) is

then of the same order of magnitude as the second term.

Even for resonant loops, if E were very large and B very

small at some point in space, the scattered voltage would

no longer be a measure of B because the first term of (6)

might be appreciable.

VII. EFFIZCT OF W1~E RESISTANCE

The effect on echo area and back scattering due to the

finite conductivity of wires easily can be incorporated

into the previous solutions. Assume that the wire has

sufficiently high conductivity that 1) the current dis-

tribution on the scatterer is not materially changed from

that on a perfect conductor, and 2) the resistance per

unit length R of the wire can be approximated by the

surface resistivity divided by the circumference of the

wire. Thsn, for nonmagnetic conductors,

where a ==wire radius and u = conductivity of the wire.

In most small scatterer applications the first term of (6)

is negligible compared to the second, and ZIZ depends
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only on the current distribution. Hence, the only sig-

nificant change introduced by wires of finite conductiv-

ity occurs in the calculation of Ztt. This change can be

accounted for by adding an IZR loss to the previously

derived radiation impedance. Hence,

Z22 = Rio,, + Z2?.0, (61)

where Zal” is the loss-free radiation impedance given by

(23). For wire scatterers,

1
Rio,, = ~ s 12Rdl. (62)

wire

However, when the scatterer is loaded, there is an addi-

tional loss in the loading impedance

ZL = RL + j.YL. (63)

For resonant dipoles, this RL of the resonating inductor

is more important than Rio,, in limiting the back-

scattered field from short dipoles.

For example, for a short dipole scatterer, the current

is given by (24) and

d
30

—–: Rb=A —.
3a UA

(64)

For a copper dipole (a= 5.7X 107) with b/a= 150, oper-

ating at A=O.1 m, one has RIO,, =O.12 ohm. If the

dipole is b =A/10 in length, then from (6) one finds

Re (Z2.2°) = 2 ohms. This is much larger than the loss

resistance. However, one needs a resonating inductor. If

the inductor is constructed of the same wire as the

dipole, the wire will be of the order of X/2 in total length.

It then has a resistance of

RL z R(A/2) = 1.8 ohms, (65)

which is approximately equal to the radiation resistance.

The Q of the scatterer plus Z~ is then approximately

half of the 485 unloaded Q calculated in Section IV, or

Q= 250. This will reduce the echo area by about 3 db

over what it was in the loss-free case. In general, for

short resonant dipole scatterers

(66)

where Q. is the loss-free Q of the dipole, given by (34),

and QL is the Q of the resonating inductance.

For the wire loop, the terminating impedance is a

capacitor, which is usually high Q. Then the principal

losses are those of the loop, given by

d30
Rio,, = R(7rd) = TZ —

a CA
(67)

For example, taking a copper wire loop having d/a= 200

and A = 0.1 m, one calculates RIO,, = 1.45 ohms. Consider-

ing the loop to be d ❑=1/10 in diameter, from (38) one has

Re (ZzZO) = 1.9 ohms. In this case the loss resistance is of

the same order of magnitude as the radiation resist-

ance, and the Q is reduced from 292 in the nonlossy

case to Q = 165 in the Iossy case. Neglecting losses in the

resonating capacitor, one has in general for small

resonant loops

1

[

RIO.,
: 1+

Q=Qo 1Re (Z,,”) ‘
(68)

where Q. is the loss-free Q, given by (46), and Re (Zz20) is

given by (38).

VIII. TUNING AND MODULATION

The use of resonant scatterers for field measure-

ments requires some sort of tuning procedure. There are

basically three ways that this might be accomplished:

1) the load impedance ZL can be varied, 2) the dimen-

sions or geometry of the scatterer can be varied, and 3)

the frequency of the field can be varied. At the longer

wavelengths, say of the order of several meters, ordi-

nary variable inductors and capacitors can be used for

tuning according to method 1). As the wavelength is

made shorter, the construction of variable reactors be-

comes more difficult, and method 2) becomes attrac-

tive. For example, consider the scatterer of Fig. 7(a).

(a) (b)

Fig. 7—Small resonant scatterers. (a) Dipole. (b) Two-turn loop

It consists of a piece of wire of length a little less than

A/2, with the central portion wound in a loosely-

spaced coil. If one stretches the dipole in the axial direc-

tion, the capacitive reactance of the dipole changes

rapidly [see (26) ] while the inductive reactance of the

coil changes very little. Hence, the dipole can be tuned

by small adjustments of its length. Similarly, Fig. 7(b)

shows a loop scatterer that can be tuned by compressing

it. The loop consists of two or more loosely-spaced turns

of wire with the two ends connected together. The total

length of wire is a little more than one wavelength.

(Hence, for a two turn loop, d =A/6; for a three turn

loop, d =X/9.) As the loop is squeezed closer together

(in the axial direction), the coupling between adjacent

wires increases and the loop resonates at shorter wave-

lengths. Finally, if it is desired that scatterers of fixed

dimensions and loads be used, the signal frequency can

be varied [method 3)]. In this case one constructs a
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scatterer to resonate at approximately the desired fre-

quency, and then the signal oscillator is tuned.

It is easier to separate the scattered signal from the

incident field if the former is modulated and the latter

not modulated. For this reason diode loads with a modu-

lated bias have been used with untuned dipole and loop

scatterers. s,4 Mechanical rotation of unloaded dipoles

has also been used to obtain modulation of the scattered

signal. z These methods of modulation can continue to

be used with resonant scatterers. However, some alter-

native modulation methods can be used with resonant

scatterers that cannot be used with nonresonant ones.

Because the resonant scatterers are high Q, small

changes in either 1) the tuning reactance, or 2) the scat-

terer dimensions, or 3) the signal frequency can produce

large changes in the scattered field. To utilize possibil-

ity 1), one could either mechanically or electrically

modulate the tuning reactance. For 2), a vibration of the

scatterer could be used to modulate the scattered signal.

The scatterer might be made mechanically resonant at

the desired modulation frequency, as well as electrically

resonant at the signal frequency. Then the desired

mechanical vibration could be obtained from a sound

wave impinging upon the scatterer. Finally, to utilize

method 3) the original signal frequency could be fre-

quency modulated. The scattered signal would then be

amplitude modulated. Only a small frequency devia-

tion, of the order of l/Q of the scatterer, would be

needed for the frequency modulation of the signal

generator. Note also that the modulation frequency of

the scattered amplitude-modulated signal from the

scatterer would be twice the modulation frequency of

the original frequency-modulated signal, if the center

frequency is the resonant frequency of the scatterer.

To take full advantage of this difference between the

scattered signal and the incident signal, special de-

tection circuits can be devised. For example, an ANI

detector having a tuning Q large compared to the

Q of the scatterer, and l/Q small compared to the

frequency deviation, can be used. This assumes that

the scatterer is the only high Q object resonating at the

test frequency.

APPENDIX

A FORMULATION OF THE GENERAL

TWO-PORT PROBLEM

The two-port problem of Fig. 1 can be viewed as a

pair of coupled antennas. Profs. HU and Hu have con-

sidered the general variational solution for a system of

N coupled linear antennas. 11 Their analysis is actually

applicable to a general N-port system of conducting

bodies if one makes the following simple changes. Re-

place all scalar Green’s functions by tensor Green’s

II Ill. K Hu and Y. Y, Hu, “Successi\-e variational approxima-
tions of impedance parameters in a coupled antenna system, ” IRE
TRANS. ON ~NTENNM AND pROPAGATIOiY, vol. .4p-7, pp. .373-379;
October, 1959.

functions, all filaments of currents by surface currents,

and all line integrals by surface integrals.

Combining (9) and (10) of Section II one has the

variaticlnal formula

(71)

—— ;, (J,, J,). (69)

LI

The last equality defines the scalar product (Ji, Yj). In

general, Ji consists of current induced on object i by

1,, denoted by J,,, plus current induced on object j by

I,, denoted by J,,; hence,

JI = Jn + J12 Jz = Jn + J21. (70)

Following Professors Hu, one assumes trial currents of

the form

JH = .70+ al.jl + a2.72 + ~ “ “ + @I&

JN = al~f+A+l + “ “ “ + aN.f.~

J,, = bl~l + b,iz + “ . . + b.u~iu

J22 = fO + hu+lh+l + . “ “ + h~y

where the an and bmare variational parameters, and the

vector currents ~~ and ~,, satisfy

jn=jn=Q at terminals 1 and 2 (72)

if n#O, and

$
I, = ~o.n Xdl Is =

$
fo. n X dl, (73)

where these integrals are taken around terminals 1 and

2, respectively. In other words, the entire excitation

currents 11 and 12 are obtained from YO and ~0, and all

other trial currents are zero at the terminals. Professors

Hu show that one should choose the number of varia-

tional parameters an equal to the number of b., since

the order of approximation corresponds to the smallest

number of an or bn. It is also shown below that there

should be as many variational parameters in Jij as in

Jjj, else the solution for ZM will diverge as the objects

are moved farther apart. In other words, M and N

should be the same numbers in JI and J2, as is shown

in (71).

Subsl:itution of (70) and (71) into (69), and setting

dZ,,/dan = dZ,j/dbn = O for all n, yields the following

forllluks.ll For 212 one has either

z,, = (fo, 7.) – [(70, ~1) (20, ~,) “ “ “ (20, lx)]

‘(fl, ~1) (fl, f2) “ “ (~1, ~N) ‘ “ ‘(71, Yo)

(~,, ~,) (f,, ?2) “ “ (:,, IN) (72, “7”)

1 (74)
. . . . . . . . . . . . . . .

\(~N, 31) (f\’, .72) “ “ (&, -h), ,(flv, ~o) 1
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or alternatively,

(f,, to) (f,, ?,) . “ (to, 3N)
(7,, 30) (21, 71) . . “ (f,, YN)

1 . . . . . . . . . . . .

. . . . . . . . .

(G, ~,) . . . (fAT, fiv)

where the scalar products (~~,, ~~) are as defined by

(69). Formulas for Z,, are (74) and (75) with all ifi’s re-

placed by the corresponding ~.’s. Formulas for 222 are

(74) and (75) with all ~n’s replaced by the correspond-

ing fm’s.

To illustrate the difficulty that occurs if Jtj does not

have the same number of variational parameters as

J,j, suppose

(76)

[This choice was purposely excluded by (71). ] The

mutual impedance (74) or (75) then becomes

(fo, -f,)(11, fo)
Z12 = (70, 10) –

(f,, YJ “
(77)

As the two objects are separated

(70, Yo) + o (f,, ~J + o, (78)

because these products involve

objects, and

A4ay

currents on different

(79)

(C’s denote constants) because they involve currents on

the same object. Hence, as the two objects are separated,

by (77) one has Zlz-+~ , an impossibility. This absurd

result can be explained by noting that

(80)

in the variational solution, and, hence, no value of al can

improve the solution. The parameter bl behaves simi-

larly. One can view this as a poor choice of trial func-

tions. However, if JM is chosen to have the same num-

ber of variational parameters as J2z, and similarly

for J,z and JII, as required by (71), then the difficulty

does not arise. To show this, note that, as the objects are

separated, the denominator

constants

of (75) becomes of the form

o’s

_—— —— (81)

I
0’s ] constants

I I

which is finite. If Jij does not have the same number of

variational parameters as J,j, then one or more rows or

columns of zeros appear” in the “constants” sections of

(81), and the denominator of (75) vanishes as the ob-

jects are separated. Of course, no such difficulty arises

in the calculation of 211 and 222.

Wide~Band Matching of Lossless Waveguide ‘Two~Ports*

DARKO KAJFE~~

Summary—A new procedure of matching is presented, based
in the equations which transform the output reflection coefficient

of a Iossless two-port network into the input reflection coefficient.
The parameters of the equations are the residual reflection coeffi-

cients which can be easily measured. The optimum reflection coeffi-
cients which have the minimum frequency variation are computed
for the specific case when the frequency variation of the residual re-
flection coefficients can be approximated by a circular arc in the
Smith diagram. An illustrative example is given to explain the deter-
mination of the position and the size of the inductive obstacles that
match a waveguide two-port structure within a wide frequency band.

* Received by the PGNITT, October 17, 1961; revised manu-
script received, January 2, 1962.

t Institute for Automation, Ljubljana, Yugoslavia.

1. INTRODUCTION

T

HERE ARE a considerable number of waveguide

structures that can be represented by an equiv-

alent two-port network. Waveguide bends,

rotary joints, coaxial-to-waveguide transducers and

many other waveguide components are typical ex-

amples of lossless two-port waveguide structures. Fre-

quently these components are not completely matched

and, in spite of careful design, they produce a dis-

continuity in the waveguide system. The aim of this

article is to present a method that will make it possible

to match the residual reflections of a two-port wave-


